interface Documentation
Release 1.4.0

Scott Sanderson

Apr 21, 2021

Contents:

1 Quick Start 3
1.1 Why Interfaces? e e e e e e 3
1.2 Using interface i i e e e e e e 4
1.3 ErrorDetection e e e e e e e e 8
1.4 interface vs.abc e e e e e e e 9
1.5 Examples o e e e e e e e e e e e e 10
1.6 APIReference e e 13
2 Indices and tables 15

interface Documentation, Release 1.4.0

interface is a library for declaring interfaces and for statically asserting that classes implement those interfaces.
It provides stricter semantics than Python’s built-in abc module, and it aims to produce exceptionally useful error
messages when interfaces aren’t satisfied.

interface supports Python 2.7 and Python 3.4+.

Contents: 1

https://docs.python.org/3/library/abc.html#module-abc

interface Documentation, Release 1.4.0

2 Contents:

CHAPTER 1

Quick Start

from interface import implements, Interface
class MyInterface (Interface):

def methodl (self, x):
pass

def method2 (self, x, vy):
pass
class MyClass (implements (MyInterface)) :

def methodl (self, x):
return x * 2

def method2 (self, x, vy):
return x + y

1.1 Why Interfaces?

1.1.1 What is an Interface?

In software generally, an interface is a description of the capabilities provided by a unit of code. In object-oriented
languages like Python, interfaces are often defined by a collection of method signatures which must be provided by
a class.

In interface, an interface is a subclass of interface.Interface that defines one or more methods with
empty bodies. For example, the interface definition for a simple Key-Value Store might look like this:

https://en.wikipedia.org/wiki/Key-value_database

interface Documentation, Release 1.4.0

class KeyValueStore (interface.Interface):

def get(self, key):
"""Get the value for " key

mmn

def set(self, key, value):
"""Set the value for " key ' to ~value

mmn

def delete(self, key):
"""Delete the value for "~ “key '

mon

1.1.2 Why Are Interfaces Useful?

Interfaces are useful for specifying the contract between two units of code. By marking that a type implements an
interface, we give a programatically-verifiable guarantee that the implementation provides the methods specified by
the interface signature. That guarantee makes it easier to write code that can work with any implementation of an
interface, and it also serves as a form of documentation.

1.2 Using interface

1.2.1 Declaring Interfaces

An interface describes a collection of methods and properties that should be provided by implementors.

We create an interface by subclassing from interface.Interface and defining stubs for methods that should be
part of the interface:

class MyInterface (interface.Interface):

def methodl (self, x, y, z):
pass

def method2 (self):
pass

1.2.2 Implementing Interfaces

To declare that a class implements an interface I, that class should subclass from implements (I):

class MyClass (interface.implements (MyInterface)):

def methodl (self, x, y, z):
return x + y + z

def method2 (self):
return "foo"

A class can implement more than one interface:

4 Chapter 1. Quick Start

interface Documentation, Release 1.4.0

class MathStudent (Interface) :

def argue(self, topic):
pass

def calculate(self, x, vy):
pass
class PhilosophyStudent (Interface):

def argue(self, topic):
pass

def pontificate(self):
pass
class LiberalArtsStudent (implements (MathStudent, PhilosophyStudent)) :

def argue(self, topic):
print (topic, "is", ["good", "bad"][random.choice ([0, 1])1])

def calculate(self, x, vy):
return x + y

def pontificate(self):
print ("I think what Wittgenstein was **reallyxx saying is...")

Notice that interfaces can have intersecting methods as long as their signatures match.

1.2.3 Properties

Interfaces can declare non-method attributes that should be provided by implementations using property:

class MyInterface (interface.Interface):

@property
def my_property(self):
pass

Implementations are required to provide a property with the same name.

class MyClass (interface.implements (MyInterface)) :

@property
def my_property(self):
return 3

1.2.4 Default Implementations

Sometimes we have a method that should be part of an interface, but which can be implemented in terms of other
interface methods. When this happens, you can use interface.default to provide a default implementation of
a method.

1.2. Using interface 5

https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/functions.html#property

interface Documentation, Release 1.4.0

class ReadOnlyMapping (interface.Interface):

def get (self, key):
pass

def keys(self):
pass

@interface.default
def get_all (self):

out = {}
for k in self.keys():
out [k] = self.get (k)

return out

Implementors are not required to implement methods with defaults:

class MyReadOnlyMapping (interface.implements (ReadOnlyMapping)) :
def _ init_ (self, data):
self._data = data

def get (self, key):
return self._datalkey]

def keys(self):
return self._data.keys()

get_all (self) will automatically be copied from the interface default.

Default implementations should always be implemented in terms of other interface methods. This ensures that the
default is valid for any implementation of the interface.

In Python 3, default will show a warning if a default implementation uses non-interface members of an object:

class ReadOnlyMapping(interface.Interface):

def get(self, key):
pass

def keys(self):
pass

@interface.default
def get_all (self):
This 1s supposed to be a default implementation for **anyx*x*
ReadOnlyMapping, but this implementation assumes that 'self' has
an _data attribute that isn't part of the interface!
return self._data.keys()

Running the above example displays a warning about the default implementation of get_all:

$ python example.py
example.py:4: UnsafeDefault: Default for ReadOnlyMapping.get_all uses non-interface,,
—attributes.

The following attributes are used but are not part of the interface:
- _data

(continues on next page)

6 Chapter 1. Quick Start

interface Documentation, Release 1.4.0

(continued from previous page)

Consider changing ReadOnlyMapping.get_all or making these attributes part of
—ReadOnlyMapping.
class ReadOnlyMapping (interface.Interface):

Default Properties

default and property can be used together to create default properties:

class ReadOnlyMappingWithSpecialKey (interface.Interface):

def get (self, key):
pass

@interface.default
@property
def special_key(self):
return self.get ('special_key")

Note: The order of decorators in the example above is important: @default must go above @property.

1.2.5 Interface Subclassing

Interfaces can inherit requirements from other interfaces via subclassing. For example, if we want to create interfaces
for read-write and read-only mappings, we could do so as follows:

class ReadOnlyMapping(interface.Interface):
def get (self, key):
pass

def keys(self):
pass
class ReadWriteMapping (ReadOnlyMapping) :

def set (self, key, value):
pass

def delete(self, key):
pass

An interface that subclasses from another interface inherits all the function signature requirements from its parent
interface. In the example above, a class implementing ReadWr i teMapping would have to implement get, keys,
set,and delete.

Warning: Subclassing from an interface is not the same as implementing an interface. Subclassing from an
interface creates a new interface that adds additional methods to the parent interface. Implementing an interface
creates a new class whose method signatures must be compatible with the interface being implemented.

1.2. Using interface 7

https://docs.python.org/3/library/functions.html#property

interface Documentation, Release 1.4.0

1.3 Error Detection

interface aims to provide clear, detailed, and complete error messages when an interface definition isn’t satisfied.

An implementation can fail to implement an interface in a variety of ways:

1.3.1 Missing Methods

Implementations must define all the methods declared in an interface.

from interface import implements, Interface
class MathStudent (Interface) :

def argue(self, topic):
pass

def prove(self, theorem):
pass

def calculate(self, x, vy, z):
pass
class Freshman (implements (MathStudent)) :

def argue(self, topic):
print (topic, "is terriblel!")

The above example produces the following error message:

Traceback (most recent call last):

interface.interface.InvalidImplementation:
class Freshman failed to implement interface MathStudent:

The following methods of MathStudent were not implemented:
— calculate(self, x, y, 2z)
- prove (self, theorem)

1.3.2 Methods with Incompatible Signatures

Implementations must define interface methods with compatible signatures:

from interface import implements, Interface
class MathStudent (Interface):

def argue(self, topic):
pass

def prove(self, theorem):
pass

(continues on next page)

8 Chapter 1. Quick Start

interface Documentation, Release 1.4.0

(continued from previous page)

def calculate(self, x, vy, z):
pass
class SloppyMathStudent (implements (MathStudent)) :

def argue(self, topic):
print (topic, "is terrible!™)

def prove(self, lemma):
print ("That's almost a theorem, right?")

def calculate(self, x, y):
return x + y

Traceback (most recent call last):

interface.interface.InvalidImplementation:
class SloppyMathStudent failed to implement interface MathStudent:

The following methods of MathStudent were implemented with invalid signatures:
— calculate(self, x, y) != calculate(self, x, vy, 2z)
- prove (self, lemma) != prove(self, theorem)

1.3.3 Method/Property Mismatches

If an interface defines an attribute as a property, the corresponding implementation attribute must also be a

property:
class Philosopher (Interface):
@property
def favorite_philosopher (self):
pass

class AnalyticPhilosopher (implements (Philosopher)) :

def favorite_philosopher(self): # oops, should have been a property!
return "Ludwig Wittgenstein"

Traceback (most recent call last):

interface.interface.InvalidImplementation:
class AnalyticPhilosopher failed to implement interface Philosopher:

The following methods of Philosopher were implemented with incorrect types:
- favorite_philosopher: 'function' is not a subtype of expected type 'property'

1.4 interface VS. abc

The Python standard library abc (Abstract Base Class) module is often used to define and verify interfaces.

interface differs from Python’s abc module in two important ways:

1.4. interface VS. abc 9

https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/abc.html#module-abc
https://docs.python.org/3/library/abc.html#module-abc

interface Documentation, Release 1.4.0

1. Interface requirements are checked at class creation time, rather than at instance creation time. This means that
interface can tell you if a class fails to implement an interface even if you never create any instances of that
class.

2. interface requires that method signatures of implementations are compatible with signatures declared in

interfaces. For example, the following code using abc does not produce an error:

>>> from abc import ABCMeta, abstractmethod
>>> class Base (metaclass=ABCMeta) :

@abstractmethod
def method(self, a, Db):
pass

>>> class Implementation (MyABC) :

def method(self): # Missing a and b parameters.
return "This shouldn't work."

>>> impl = Implementation ()
>>>

The equivalent code using interface produces an error telling us that the implementation method doesn’t
match the interface:

>>> from interface import implements, Interface
>>> class I (Interface):
def method(self, a, Db):
pass

>>> class C(implements(I)):
def method(self):
return "This shouldn't work"

TypeError:
class C failed to implement interface I:

The following methods were implemented but had invalid signatures:
- method(self) != method(self, a, b)

1.5 Examples

Suppose we’re writing an application that needs to load and save user preferences.

We expect that we may want to manage preferences differently in different contexts, so we separate out our preference-
management code into its own class, and our main application looks like this:

class MyApplication:

def _ _init__ (self, preferences):
self.preferences = preferences

def save_resolution(self, resolution):
self.preferences.set ('resolution', resolution)

def get_resolution(self):

(continues on next page)

10

Chapter 1. Quick Start

https://docs.python.org/3/library/abc.html#module-abc

interface Documentation, Release 1.4.0

(continued from previous page)

return self.preferences.get ('resolution')

def save_volume (self, volume) :
self.preferences.set ('volume', volume)

def get_volume (self):
return self.preferences.get ('volume')

When we ship our application to users, we store preferences as a json file on the local hard drive:

class JSONFileStore:

def _ _init__ (self, path):
self.path = path

def get(self, key):
with open(self.path) as f:
return json.load(f) [key]

def set(self, key, value):
with open(self.path) as f:
data = json.load(f)

datalkey] = wvalue

with open(self.path, 'w') as f:
json.dump (data, f)

In testing, however, we want to use a simpler key-value store that stores preferences in memory:

class InMemoryStore:

def _ init_ (self):
self.data = {}

def get (self, key):
return self.datalkey]

def set(self, key, value):
self.datalkey] = wvalue

Later on, we add a cloud-sync feature to our application, so we add a third implementation that stores user preferences
in a database:

class SQLStore:

def init (self, user, connection):
self.user = user
self.connection = connection

def get (self, key):
self.connection.execute (
"SELECT % FROM preferences where key= and user=%s",
[self.key, self.user],

(continues on next page)

1.5. Examples 11

interface Documentation, Release 1.4.0

(continued from previous page)

def set (self, key, value):
self.connection.execute (
"INSERT INTO preferences VALUES (%s, , ",
[self.user, self.key, value],

As the number of KeyValueStore implementations grows, it becomes more and more difficult for us to make
changes to our application. If we add a new method to any of the key-value stores, we can’t use it in the application
unless we add the same method to the other implementations, but in a large codebase we might not even know what
other implementations exist!

By declaring KeyValueStore as an Interface we can get interface to help us keep our implementations in
sync:

class KeyValueStore (interface.Interface):

def get (self, key):
pass

def set(self, key, value):
pass
class JSONFileStore (implements (KeyValueStore)) :

class InMemoryStore (implements (KeyValueStore)) :

class SQLStore (implements (KeyValueStore)) :

Now, if we add a method to the interface without adding it to an implementation, we’ll get a helpful error at class
definition time.

For example, if we add a get_default method to the interface but forget to add it to SQLStore:

class KeyValueStore (interface.Interface):

def get(self, key):
pass

def set (self, key, value):
pass

def get_default (self, key, default):
pass
class SQLStore (interface.implements (KeyValueStore)) :

def get (self, key):
pass

def set (self, key, value):
pass

(continues on next page)

12 Chapter 1. Quick Start

interface Documentation, Release 1.4.0

(continued from previous page)

We forgot to define get_default!

We get the following error at import time:

$ python example.py
Traceback (most recent call last):
File "example.py", line 16, in <module>
class SQLStore (interface.implements (KeyValueStore)) :
File "/home/ssanderson/projects/interface/interface/interface.py", line 394, in
—new___
raise errors[0]
File "/home/ssanderson/projects/interface/interface/interface.py", line 376, in

—new___
defaults_from_iface = iface.verify(newtype)
File "/home/ssanderson/projects/interface/interface/interface.py", line 191, in_
—verify

raise self._invalid_implementation (type_, missing, mistyped, mismatched)
interface.interface.InvalidImplementation:
class SQLStore failed to implement interface KeyValueStore:

The following methods of KeyValueStore were not implemented:
- get_default (self, key, default)

1.6 API Reference

1.6. API Reference 13

interface Documentation, Release 1.4.0

14 Chapter 1. Quick Start

CHAPTER 2

Indices and tables

* genindex
* modindex

e search

15

	Quick Start
	Why Interfaces?
	Using interface
	Error Detection
	interface vs. abc
	Examples
	API Reference

	Indices and tables

